Nanomagnonics : from metals to insulators

D. Grundler

Institute of Materials (IMX) and Institute of Microengineering (IMT), Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), École Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne, Switzerland dirk.grundler@epfl.ch

KEY WORDS: spin waves, magnonics, magnonic crystal, chiral magnet, skyrmion.

Collective spin excitations in magnetically ordered materials have gained a broad interest in recent years. Here spin waves (magnons) in magnetic nanostructures have formed a particular focus as they allow one to transmit and process microwave signals at the nanoscale. For a long time, ferromagnetic metals were exploited to prototype nanomagnonic waveguides and magnonic crystals which provide an unprecedented control over spin-wave band structures [1]. To harvest the advantages and low-energy consumption which a magnonics-based technology could offer materials of low spin-wave damping are required however. Correspondingly, magnetic insulators become important in the research field. We will review and discuss recent advances based on ferromagnetic insulators with and without Dzyaloshinsky-Moriya interaction that allow one to tailor spin-wave properties at the nanoscale via chiral spin structures [2] or nanostructuring (Fig. 1). We acknowledge support by the DFG via Nanosystems Intiative Munich, project GR1640/5-2 and the Transregio TRR80 "From electronic correlations to functionality" (project F7). The Swiss National Science foundation (SNSF) funds magnonics research on skyrmion-hosting materials via the sinergia network "Nanoskyrmionics" (grant CRSII5-171003).

Fig. 1: Thin film of insulating ferromagnetic yttrium iron garnet (YIG) with an integrated array of ferromagnetic disks nanopatterned from CoFeB (period p = 800 nm, highlighted by dashed circles). The coplanar waveguide allows one to excite exchange-dominated spin waves propagating through YIG [3].

[1] A.V. Chumak, A.A. Serga, and B. Hillebrands, *Magnonic crystals for data processing*, J. Phys. D: Appl. Phys. **50**, 244001 (2017)

[2] M. Garst, J. Waizner, and D. Grundler, *Collective spin excitations of helices and magnetic skyrmions:* review and perspectives of magnonics in non-centrosymmetric magnets, J. Phys. D: Appl. Phys., in press (2017), https://doi.org/10.1088/1361-6463/aa7573

[3] Haiming Yu et al., *Approaching soft X-ray wavelengths in nanomagnet-based microwave technology*, Nature Commun. 7, 11255 (2016)